You should be able to do the following.....

1. Simplify expressions using PEMDAS rules. (Section 1.2)

11.
$$6 - 4 + 8$$

12.
$$4 + 16 \div 4$$

13.
$$10 \div 2 - 3 \cdot 4$$

14.
$$24 \div (7-5) \cdot -3$$

15.
$$4 - (-6 + 2)^2$$

14.
$$24 \div (7-5) \cdot -3$$
 15. $4 - (-6+2)^2$ **16.** $(4 \cdot 5)^2 \div (12-2)$

2. Evaluate an expression when given values for variables. (Section 1.2)

18.
$$10 - 2x$$
 when $x = 5$

18.
$$10 - 2x$$
 when $x = 5$ **19.** $3x(x - 14)$ when $x = -1$

21.
$$x^2 - 25$$
 when $x = -7$

21.
$$x^2 - 25$$
 when $x = -7$ **22.** $-x^2 + 5x - 4$ when $x = 2$

3. Simplify expressions by combining terms. (Section 1.3)

24.
$$8 - 5x + 7x - 2$$

24.
$$8 - 5x + 7x - 2$$
 25. $x + 9x^2 + 3x^2 - 11x$

27.
$$15 + 2(3x - 7)$$

28.
$$3(x + 4) - 5(x - 2)$$

29. A restaurant charges \$9.95 for a large pizza with two toppings, and \$1.25 for each additional topping. Write an algebraic model for the total cost C of a pizza with t toppings. Find the cost of a pizza with three toppings and the cost of a pizza with five toppings.

4. Solve equations. (Section 1.4)

30.
$$2x + 5 = -3$$

31.
$$18 - 7x = 4$$

30.
$$2x + 5 = -3$$
 31. $18 - 7x = 4$ **32.** $2x + 3 = 4x - 15$

33.
$$7x - 3 = 5x + 17$$
 34. $-(x + 2) = -8$

34.
$$-(x + 2) = -8$$

35.
$$6(x-6) = -2x-4$$

36.
$$3(x-1) = x+7$$
 37. $\frac{x}{5} + 2 = -4$

37.
$$\frac{x}{5} + 2 = -4$$

38.
$$\frac{4}{9}x - \frac{1}{3} = \frac{3}{9}x + \frac{4}{3}$$

47. A taxi charges \$3.50 plus \$1.75 per mile. Your ride in the taxi costs \$21.00. Write and solve an algebraic model to find the length (in miles) of your ride.

48. Tulip bulbs cost \$7 per pack. Crocus bulbs cost \$4 per pack. You buy n packs of each type of flower bulb and pay \$44. How many packs of each do you buy?

5. Solve absolute value equations. (Section 4.4)

19.
$$|x-4|=2$$

20.
$$|x-9|=1$$

21.
$$|2x-6|=4$$

19.
$$|x-4|=2$$
 20. $|x-9|=11$ **21.** $|2x-6|=4$ **22.** $|2x+1|+3=6$

* Remember: The absolute value of something cannot be a negative number!

6. Solve inequalities and graph the solution on a number line. (Section 4.1)

5.
$$x - 3 > 2$$

6.
$$2x + 1 \ge -1$$

7.
$$-6 < x - 5 \le -1$$

8.
$$-3 < 2x + 3 < 7$$

9.
$$4x + 3 \le -5$$
 or $x + 6 \ge 8$

10.
$$2x + 3 \le 1$$
 or $3x - 2 > 7$

7. Solve absolute value inequalities and graph the solution on a number line. (Section 4.4)

23.
$$|x-7| < 12$$

24
$$|x+2| < 6$$

25.
$$|2x-5| \le 9$$

23.
$$|x-7| < 12$$
 24. $|x+2| \le 6$ **25.** $|2x-5| \le 9$ **26.** $|7x+7| < 14$ **27.** $|x+3| > 5$ **28.** $|2x+1| \ge 3$

27.
$$|x+3| > 5$$

28.
$$|2x+1| \ge 3$$

* Remember: great"er" = OR less th"an" = AND